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102.0°. In contrast to this, Ta(2) is linked to a r75-CsMe4Et 
ligand, to two chloride ligands, to a terminal hydride ligand, 
and to the bridging atoms C(I) and O; the coordination envi­
ronment of Ta(2) is thus best described as a "3,4,1" type. We 
emphasize that we did not locate directly the terminal hydride 
ligand on Ta(2). However, there is clearly a hole in the pseu-
dooctahedral arrangement around Ta(2) where it should be; 
i.e., Cl(3)-Ta(2)-Cl(4), 96.5 (2); CI(4)-Ta(2)-0 , 98.0 (3); 
butO-Ta(2)-Cl(3), 150.1 (3)°. The observable Cp-Ta(2)-L 
angles are Cp-Ta(2)-Cl(3), 101.1; Cp-Ta(2)-CI(4), 104.7; 
Cp-Ta(2) -0 , 100.3;Cp-Ta(2)-C(l) , 172.5°. 

We propose that the C-O bond in the "772-formyl" ligand 
is disrupted when PMe-) attacks the carbon. Angles within this 
system [C(I) -Ta(I) -O, 78.0 (6); Ta(I ) -0-Ta(2) , 102.1 (5); 
0 -Ta (2 ) -C( l ) , 72 .7 (5 ) ;Ta ( l ) -C( l ) -Ta (2 ) ,82 .2 (6 ) ° ] and 
the cross-bridge distances [Ta(I )—Ta(2) = 2.992 (1) and 
C ( I ) - O , 2.579 (2) A] do not allow an unambiguous assess­
ment as to the importance of any direct tantalum-tantalum 
bonding. The Me3PCH moiety is best regarded as a phos-
phonium ylide, the P-C(I) distance being 1.750 (18) A, 
compared with P-Me distances of 1.834 (20), 1.840 (21), and 
1.847 (25) A. Similar distances were found in the related 
species Fe2(CO)6I(CHO)P(Ph2C6H4)] .1 6 

Evidently, the "formyl" ligand in 2 is grossly "overstabil-
ized" as a metallaoxirane complex of d0 Ta(V). Nevertheless, 
we feel that there must be some circumstances where such 
stabilization is great enough to yield a fair concentration of 
metallaoxirane but not great enough to prevent its reacting 
further with CO or H2. We think that these results further 
provoke the question as to whether intermolecular addition of 
M-H to M-CO may be more favorable than intramolecular 
addition of M-H to M-CO (with or without any stabilization 
in either case)17 and also raise some intriguing questions 
concerning nucleophilic attack at an "r/2-formyr carbon 
atom. 
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EPR Detection of (CF3)3CI-. A Test Case Regarding 
the Stability of R X - Radical Anions 

Sir: 

Recent EPR studies have shown that electron attachment 
to certain halides of saturated carbon, including the perfluo-
rocycloalkanes and trifluoromethyl halides, leads to the for­
mation of stable a* radical anions.1-3 The stability of the 
CF3X - (X = Cl, Br, I) series of radical anions contrasts with 
the fact that the methyl halides invariably undergo a disso­
ciative reaction immediately after electron capture, only the 
weakly bound CH3 X - species being produced even in a 
rigid crystalline matrix.4'5 This difference has led Symons to 
postulate6 that the tendency for the dissociation of R X - is 
determined by the change which occurs in orbital hybridization 
and configuration at the a-carbon atom in the formation of the 
potential radical R-, a large change as exemplified by4-5 

CH3X" •CH3—-X- (D 
bringing about the immediate dissociation of the virtual R X -

species. We report here a test case which invalidates this 
general proposition. 

Although the CF3 radical is pyramidal,7 the C(CFs)3 radical 
is judged to be nearly planar on the basis of the ' 3C hyperfine 
coupling of 44.3 G for the a carbon.8 Thus, according to the 
above postulate, the (CFs) 3 CX - radical anions should be 
unstable and only the neutral (CF3)3C radicals should be 
produced on electron attachment to the perfluoro-/e/t-butyl 
halides. We find, however, that the EPR spectrum of a -y-ir-
radiated solution of (CF3)3CI in a 2-methyltetrahydrofuran 
glass (Figure 1) provides clear evidence for the radical anion. 

Figure 1. First-derivative EPR spectrum of a 2-methyltetrahydrofuran 
glass containing 4 mol % perfluoro-?e/7-butyl iodide recorded at 87 K after 
7 irradiation at 77 K for a dose of 1.5 Mrad. The stick diagrams show the 
features assigned to the (CFj)JCI- radical anion, and the upper trace at 
high field was obtained under conditions of larger amplification, modu­
lation, and response time. 
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As indicated by the stick diagrams, the spectral features are 
readily analyzed into sets of parallel and perpendicular com­
ponents resulting from hyperfine interaction with '27I (/ = %), 
the substructure of each component consisting of a 1:3:3:1 line 
group characteristic of coupling to three equivalent l9F's (/ 
= V2) nuclei. The observation of significant interaction with 
only three out of the nine fluorines [l9/l|j(3) = 1 2 1 ; X9A j_(3) 
= 109 MHz] is accounted for by the preferred conformation 
1 in which the C^—Fa bond from each of the three CF3 groups 

is aligned parallel to the Ca—I bond wherein most of the spin 
density is concentrated (vide infra). This is quite analogous to 
the most stable conformation of the perfluoroethyl radical 
resulting from hindered rotation about the C„—C^ bond, the 
measured couplings for the three axial fluorines being very 
similar to that (113 MHz) for the unique /3-fluorine of C2F5,9 

as expected for a largely isotropic interaction. 
The assignment of the spectrum to the (CF3)SCI - radical 

anion is established by the marked anisotropy of the g and ' 27I 
hyperfine tensors which is characteristic of a large spin density 
in the 5pff orbital of the iodine atom.10 A good least-squares 
fit of the line positions was obtained by a matrix diagonaliza-
tion program without the inclusion of an iodine quadrupole 
interaction, the parameters and their standard deviations" 
beingg\\ = 1.9631 (9),g± = 2.1651 (13); nlA\\ = 1282.9(6.9) 
and [21A x = 489.7 (8.8) MHz. By including a correction for 
the orbital contribution to ]21A±,10 values of nlA\S0 = 671.1 
and 121B = 305.9 MHz are derived for the isotropic and an­
isotropic 127I hyperfine coupling constants. Accordingly, we 
obtain a '2 7I (5p) contribution of 0.38 to the semioccupied 
orbital by taking ' 27Bo for unit spin density to be 812.4 MHz.'2 

The existence of such a large spin density on iodine points 
clearly to the stability of the (CF 3 ) 3 CI - radical anion despite 
the near planarity of the (CF3)3C radical; so one is forced to 
look elsewhere for an explanation of the factors governing the 
stability of R X - radical anions.13 

If the R group is considered as a pseudohalogen in a di­
atomic-like R X - , it seems reasonable to propose that the sta­
bility of R X - with respect to its dissociation modes (R- + X -

or R - + X-) is governed by the extent to which the spin density 
is shared between the atomic orbitals of the localized three-
electron bond, the maximum stability being attained for ho-
monuclear diatomics such as I2 - and its congeners. This 
strongly suggests that relative electronegativity is likely to be 
an important factor, and this could well be the reason why the 
127I (5p) spin density of 0.38 for (CF 3 ) 3 CI - is larger than the 
corresponding value (0.23) for CF3I - .3-1 4 '1 5 
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[ 1,3]-Sigmatropic Shifts 
for 5-X-Bicyclo[2.1.0]pent-2-enes. 
An Evaluation of the Pseudopericyclic Model1 

Sir: 

Perfluorotetramethyl (Dewar thiophene) exo-S-ox\de (1) 
undergoes a remarkably facile degenerate rearrangement 
(AH* = 6.6 kcal/mol).2 '3 The small barrier has been inter­
preted by Lemal and co-workers23 to exclude both a four-
electron pericyclic [l,3]-sigmatropic shift and a biradical 
process as the reaction mechanism.4 A six-electron process was 
proposed instead in which the endocyclic lone pair on sulfur 
participates nucleophilicly, with the result that bonding and 
nonbonding orbitals on sulfur interchange roles. The concept 
was generalized and the suggestion made that such transfor­
mations be designated as pseudopericyclic.2 
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We point out that the quantum mechanical distinction be­
tween a "four-electron" pericyclic and a "six-electron" pseu­
dopericyclic transition state is not clear-cut. This conclusion 
follows from the fact that the pericyclic-shift MO's of Figures 
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